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3 Unité Mixte de Recherche (UMR 6207) du CNRS et des Universités Aix–Marseille I,
Aix–Marseille II et du Sud Toulon-Var, laboratoire affilié à la FRUMAM (FR 2291), France
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Abstract
Multiplicative analogues of the shuffle elements of the braid group rings are
introduced; in local representations they give rise to certain graded associative
algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-
symmetrizers have simple expressions in terms of the multiplicative shuffles.
The (anti)-symmetrizers can be expressed in terms of the highest multiplicative
1-shuffles (for the Hecke and BMW algebras) and in terms of the highest
additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities
of eigenvalues of the operators of the multiplication by the multiplicative and
additive 1-shuffles are examined.

PACS number: 02.10.Hh
Mathematics Subject Classification: 81R50, 16W30, 16W35, 17B37

1. Braid shuffles

In this section we collect some necessary information on shuffle elements in the braid group
rings.

In the Artin presentation, the braid group BM+1 is given by generators σi, 1 � i � M ,
and relations

σiσjσi = σjσiσj if |i − j | = 1, (1)

σiσj = σjσi if |i − j | > 1. (2)

The inductive limit B∞ = lim−→BM is defined by inclusions BM → BM+1, BM � σi �→ σi ∈
BM+1, i = 1, . . . ,M − 1.

We denote w↑�, as in [28], the image of an element w ∈ B∞ under the endomorphism
of B∞, sending σi to σi+�, i = 1, 2, . . . (we keep the same notation for the Hecke and BMW
quotients of the braid group rings).

4 On leave of absence from P N Lebedev Physical Institute, Leninsky Pr 53, 117924 Moscow, Russia.
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Braid shuffle elements Xm,n (m, n ∈ Z�0) are analogues of the binomial coefficients.
The shuffle elements belong to the group ring of Bm+n (and thereby of B∞); they can be defined
inductively by any of the recurrence relations (braid analogues of the Pascal rule)

Xm,n = Xm−1,n + Xm,n−1σm+n−1 · · · σn, (3)

Xm,n = X↑1
m,n−1 + X↑1

m−1,nσ1 · · · σn, (4)

together with the boundary conditions X0,n = 1 and Xn,0 = 1 for any non-negative
integer n.

Let �n be the lift [23] of the symmetrizer
∑

g∈Sn
g from the symmetric group ring ZSn to

ZBn. The element �n is the braid analogue of n!; it satisfies

�m+n = Xn,m�m�↑m
n . (5)

Using the automorphism a and the anti-automorphism b, b(xy) = b(y)b(x), of the braid group
Bn+1, defined on the generators by

a : σi �→ σn+1−i , b : σi �→ σi, (6)

and their composition, one obtains three more decompositions of �.
Higher shuffles (braid analogues of the trinomial, etc coefficients) appear in the further

decompositions of the elements �n

�m+n+k =
{
Xn+k,m�m�

↑m

n+k = Xn+k,mX↑m

k,n�m�↑m
n �

↑m+n

k ,

Xk,m+n�m+n�
↑m+n

k = Xk,m+nXn,m�m�↑m
n �

↑m+n

k .
(7)

Due to the existence of a (one-sided) order on the braid groups [5], the braid group rings ZBn

have no zero divisors. Equating the two expressions for �m+n+k in (7) and simplifying, one
finds

Xn+k,mX↑m

k,n = Xk,m+nXn,m. (8)

A direct verification of (8) is a good exercise. Any of the expressions in (8) is the braid
trinomial coefficient Xk,n,m. The element �n is the shuffle X1,1,...,1.

We shall later use the following identity:

X1,n−1X1,n−2 · · ·X1,n−k = Xk,n−k�
↑n−k

k , (9)

which is verified by induction. For k = 1 there is nothing to prove. The induction step uses
(8) and then (5)

Xk,n−k�
↑n−k

k X1,n−k−1 = Xk,n−kX1,n−k−1�
↑n−k

k

= Xk+1,n−k−1X
↑n−k−1
k,1 �

↑n−k

k = Xk+1,n−k−1�
↑n−k−1
k+1 . (10)

Shuffle elements find numerous applications in the theories of free Lie algebras,
polylogarithms and multiple zeta values, Hopf algebras, differential calculus on quantum
groups, homology of quantum Lie algebras, braidings of tensor spaces, etc [29, 3, 26, 1, 30,
34, 15, 8, 9].

2. B-shuffle algebras

In this section we recall the definition of the Nichols–Woronowicz algebras and construct,
with the help of the baxterized elements, another family of graded associative algebras in the
tensor spaces of local representations of the braid groups.
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(1) Let V be a vector space over a field k. For an operator X ∈ End(V ⊗j ) we denote by the
same symbol the operator X ⊗ Id⊗l ∈ End(V ⊗(j+l)) for any l ∈ Z�0; X↑l denotes the
operator Id⊗l ⊗ X ∈ End(V ⊗(j+l)).

Let {T m,n}m,n∈Z�0 be a collection of operators, Tm,n ∈ End(V ⊗(m+n)), such that

Tn+k,mT
↑m

k,n = Tk,m+nTn,m ∀m, n, k ∈ Z�0. (11)

For tensors u ∈ V ⊗m and v ∈ V ⊗n let

u 
 v := Tn,m(u ⊗ v) ∈ V ⊗(m+n). (12)

Due to (11), the space
⊕

j V ⊗j with the composition law 
 is an associative graded
algebra. Assume, in addition, that

Tm,0 = Id and T0,m = Id ∀m ∈ Z�0 (13)

(then 1 ∈ k ≡ V ⊗0 is the identity element of the algebra). By (11) and (13), the following
collection {Sm}m∈Z�0 of operators, Sm ∈ End(V ⊗m):

S0 = Id, S1 = Id, Sm+n = Tn,mSmS↑m
n ∀m, n ∈ Z�0, (14)

is well defined. The operation 
 restricts on
⊕

j Im(Sj ), the direct sum of images of the
operators Sj , making it an associative graded algebra as well.

Let R̂ ∈ End(V ⊗ V ) be a solution of the Yang–Baxter equation, that is, R̂R̂↑1R̂ =
R̂↑1R̂R̂↑1. Denote by ρR̂ the corresponding local representation of the braid groups
Bn, ρR̂(σi) := R̂↑(i−1). Then the collection Tm,n := ρR̂(Xm,n) obeys (11) and (13). The
space

⊕
j Im ρR̂(�j ) with the composition law 
 is called the Nichols–Woronowicz

algebra.
(2) The braid group rings admit a family of automorphisms σi �→ tσi , where t ∈ k∗ is an

arbitrary parameter. The formal limits limt→0 (the lowest power in t) and limt→∞ (the
highest power in t) of the elements �m,Xm,n and the operation 
 are well defined. For
t → 0 we obtain the usual tensor algebra, while for t → ∞ the element �n+1 becomes
the lift of the longest element of the symmetric group Sn+1 to Bn+1

�̄n+1 = (σ1σ2 · · · σn)(σ1 · · · σn−1) · · · (σ1). (15)

The shuffle elements, in the limit limt→∞, become the elements X̄m,n which, in a
representation in a vector space V , equip the tensor powers of V with the standard
braidings; the recurrency relations (3) and (4) take the multiplicative form for X̄m,n

X̄m,n = X̄m,n−1σm+n−1 · · · σn, X̄m,n = X̄↑1
m−1,nσ1 · · · σn. (16)

Explicitly

X̄m,n =
{

(σmσm+1 · · · σm+n−1)(σm−1σm · · · σm+n−2) · · · (σ1σ2 · · · σn),

(σmσm−1 · · · σ1)(σm+1σm · · · σ2) · · · (σm+n−1σm+n−2 · · · σn).
(17)

In addition to (16), the elements X̄m,n satisfy

X̄m,n = σm · · · σ1X̄
↑1
m,n−1, X̄m,n = σm · · · σm+n−1X̄m−1,n. (18)

(3) In this section we shall construct another collection Tm,n starting with the elements
σk(x, y), satisfying the Yang–Baxter equation with spectral parameters

σk(xk+1, xk+2)σk+1(xk, xk+2)σk(xk, xk+1) = σk+1(xk, xk+1)σk(xk, xk+2)σk+1(xk+1, xk+2)

(19)

and the locality condition

σk(xk, xk+1)σl(xl, xl+1) = σl(xl, xl+1)σk(xk, xk+1) if |k − l| > 1. (20)

3
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Here xk are variables (spectral parameters). Depending on the situation, the elements
σk(x, y) can live in certain quotients of the braid group rings or be realized as operators.
We shall call σk(x, y) baxterized elements (usually the term ‘baxterized’ is applied when
σ(x, y) is a function of the solution σ of the constant Yang–Baxter equation).

Let πk be the operator which permutes the variables xk and xk+1

πkf (. . . , xk, xk+1, . . .) = f (. . . , xk+1, xk, . . .)πk.

Relations (19) and (20) acquire the braid forms (1) and (2) for the elements

σ k := πkσk(xk, xk+1). (21)

The unitarity condition σk(xk, xk+1)σk(xk+1, xk) = 1 (if imposed) for the baxterized
elements takes the form σ 2

k = 1 for the elements (21).
The operators πk obey the braid group relations; prepare the elements X̄m,n{π} and

�̄m{π} from π ’s; the elements X̄m,n{σ } and �̄m{σ } built from σ ’s can be written, after
moving all π ’s to the left, in the form

X̄m,n{σ } = X̄m,n{π}X̃m,n(x1, . . . , xm+n), �̄m{σ } = �̄m{π}�̃m(x1, . . . , xm),

(22)

where

X̃m,n(x1, . . . , xm+n) = (σm(x1, xm+n)σm+1(x2, xm+n) · · · σm+n−1(xn, xm+n))

· (σm−1(x1, xm+n−1)σm(x2, xm+n−1) · · · σm+n−2(xn, xm+n−1))

· · · (σ1(x1, xn+1)σ2(x2, xn+1) · · · σn(xn, xn+1)) (23)

and

�̃m(x1, . . . , xm) = (σ1(xm−1, xm)σ2(xm−2, xm) · · · σm−1(x1, xm))

· (σ1(xm−2, xm−1)σ2(xm−3, xm−1) · · · σm−2(x1, xm−1)) · · · (σ1(x1, x2)). (24)

The elements X̄m,n{π} and �̄n{π} are invertible and obey relations (5), (8), (16) and (18);
substituting (22) into (5), (8), (16) and (18), moving all π ’s to the left and simplifying,
we find relations for �̃’s and X̃’s alone. Relations (16) and (18) take the form

X̃m,n(x1, . . . , xm+n)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X̃m,n−1(x̂n)σm+n−1(xn, xm+n)σm+n−2(xn, xm+n−1)· · ·σn(xn, xn+1),

X̃
↑1
m−1,n(x̂n+1)σ1(x1, xn+1)σ2(x2, xn+1)· · ·σn(xn, xn+1),

σm(x1, xm+n)σm−1(x1, xm+n−1)· · ·σ1(x1, xn+1)X̃
↑1
m,n−1(x̂1),

σm(x1, xm+n)σm+1(x2, xm+n)· · ·σm+n−1(xn, xm+n)X̃m−1,n(x̂m+n),

(25)

where ‘x̂j ’ means that the argument xj is omitted. For a set −→x = {x1, . . . , xn} of
arguments, let ←−x := {xn, . . . , x1} be the reversed set. Relation (5) becomes

�̃m+n(
−→x ,−→y ) = X̃n,m(←−x ,←−y )�̃m(−→x )�̃↑m

n (−→y ), (26)

where −→x = {x1, . . . , xm} and −→y = {y1, . . . , yn}; relation (8) becomes

X̃n+k,m(−→x ,−→z ,−→y )X̃
↑m

k,n(
−→y ,−→z ) = X̃k,m+n(

−→y ,−→x ,−→z )X̃n,m(−→x ,−→y ), (27)

where −→x = {x1, . . . , xm},−→y = {y1, . . . , yn} and −→z = {z1, . . . , zk}.
After the removal of all π ’s, one can give values to the spectral variables. Each

�̃m can be evaluated on its own sequence �x(m) = (
x

(m)
1 , . . . , x(m)

m

)
. In relation (26), the

4
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beginning of the sequence for �̃m+n becomes the beginning of the sequence for �̃m while
its end becomes the beginning of the sequence for �̃n. This is a strong restriction; if it
is imposed on the sequences themselves, the general solution is that each x

(m)
j is equal to

one and the same number. However, assume that the baxterization is ‘trigonometric’, the
baxterized elements depend on the ratio of the spectral parameters, σ(x, y) = σ(x/y).
The Yang–Baxter equation then reads

σn(x)σn−1(xy)σn(y) = σn−1(y)σn(xy)σn−1(x). (28)

Now �̃m(�x(m)) = �̃m(α�x(m)) for an arbitrary constant α �= 0 and the general solution
of the restrictions imposed by (26) for the projectivized sequences is

(
x

(m)
1 , . . . , x(m)

m

) =
(1, s−1, s−2, . . . , s1−m), the geometric progression. Denote �̃m(1, s−1, s−2, . . . , s1−m)

by s�m and X̃m,n(s
1−n, . . . , 1, s1−m−n, . . . , s−n) by sXm,n. Explicitly

s�m = (σ1(s)σ2(s
2) · · · σm−1(s

m−1))(σ1(s)σ2(s
2) · · · σm−2(s

m−2)) · · · (σ1(s)) (29)

and
sXm,n = (σm(s) · · · σm+n−1(s

n))(σm−1(s
2) · · · σm+n−2(s

n+1))· · ·(σ1(s
m) · · · σn(s

m+n−1)).

(30)

The elements sXm,n obey relation (8). Therefore, in a local representation ρ, the
collection Tm,n := ρR̂(sXm,n) obeys (11) and (13) and defines a one-parameter family
of graded associative algebras on

⊕
j V ⊗j together with the subalgebras on

⊕
j Im(Sj )

(now Sm = ρR̂(s�m)), which we propose to call b-shuffle algebras (‘b’ from ‘baxterized’;
maybe the term ‘buffle’ would be an apt acronym).

It is known that the element �̄ admits reduced expressions starting (or ending) with
σj for every j = 1, . . . , m − 1. In particular, �̄{σ } can start (or end) with every σ j . It
follows that �̃m(x1, . . . , xm) can start (or end) with σj (xj , xj+1) for every j . We shall use
this for the trigonometric σ ’s.
s�m has a reduced expression of the form σj (s) · (· · ·) or (· · ·) · σj (s)∀j = 1, . . . , m− 1.

(31)

The baxterization is known for the Hecke and BMW quotients of the braid group
rings; it is trigonometric. In the following section we discuss the baxterized collections
for these quotients.

Remarks.

(a) We suggest another natural source for collections Tm,n satisfying (11) and (13).
Let A be a Hopf algebra. Assume that A admits a twist F , that is, an element

F ∈ A ⊗ A which satisfies

F · (� ⊗ Id)(F) = F↑1 · (Id ⊗ �)(F). (32)

Here � is the coproduct and ↑ is the shift in the copies of A in A⊗j . Define Fm,0 := 1,

F0,m := 1,m ∈ Z�0, and

Fm,n := �m−1 ⊗ �n−1(F), m, n ∈ Z�1. (33)

It is straightforward to verify that

Fk,mFm+k,n = F↑k
m,nFk,m+n (34)

(for m = n = k = 1 this is (32); by induction, Idi−1 ⊗ � ⊗ Idm+n+k−i increases k by 1 for
1 � i � k,m by 1 for k < i � m + k and n by 1 for m + k < i � m + n + k).

5
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Therefore, given a representation ρ of A, relations (11) and (13) hold for

Tm,n := 	 ◦ ρ⊗(m+n)(Fn,m),

where 	 is any operation which reverses the order of terms on both sides of (34) (it can
be a transposition or, if Fm,n are invertible for all m and n, an inversion).

It might be of interest to investigate this type of collections Tm,n for the twists [14]
corresponding to Belavin–Drinfeld triples.

(b) Assume, in addition, that F satisfies

(� ⊗ Id)(F) = F{1,3}F{2,3}, (Id ⊗ �)(F) = F{1,3}F{1,2}, (35)

where F{i,j} is the element F located in the copies number i and j in A ⊗ A ⊗ · · · ; for
example, for a quasi-triangular Hopf algebra, F can be the universal R-matrix. Then

Fm,n = (F{1,m+n} · · ·F{m,m+n})(F{1,m+n−1} · · ·F{m,m+n−1}) · · · (F{1,m+1} · · ·F{m,m+1}) (36)

(in each bracket the first index increases from 1 to m, the second one is constant); this
formula generalizes the formula � ⊗ �(R) = R{1,4}R{2,4}R{1,3}R{2,3} used in the theory
of quasi-triangular Hopf algebras for establishing properties of the element giving the
square of the antipode by conjugation, see, e.g., [[27], chapter 4]. It follows from (36)
that:

Fm,n = (F{1,m+n}F{1,m+n−1} · · ·F{1,m+1})F↑1
m−1,n. (37)

Given a representation ρ of A on a vector space V , let Pi be the flip operator in the copies
number i and i + 1 of the space V in V ⊗ V ⊗ · · · ; let F := ρ⊗2(F) and F̂ := P1F ; for
an operator X ∈ End(V ⊗ V ) denote by X{i,j} the operator X acting in the copies number
i and j of the space V in V ⊗ V ⊗ · · · and let Xi := X{i,i+1}. Then

ρ⊗(m+n)(Fm,n) = X̄m,n{P }X̄n,m{F̂ }, (38)

where X̄m,n{P } are built from P’s and X̄n,m{F̂ } from F̂ ’s. Indeed, by (37) and induction

ρ⊗(m+n)(Fm,n) = (F{1,m+n} · · · F{1,m+1})X̄
↑1
m−1,n{P }X̄↑1

n,m−1{F̂ }
= (P{1,m+n} · · · P{1,m+1})(F̂m+n−1F̂m+n−2 · · · F̂m+1F̂{1,m+1}X̄

↑1
m−1,n{P }X̄↑1

n,m−1{F̂ }.
(39)

Use now

(F̂m+n−1F̂m+n−2 · · · F̂m+1F̂{1,m+1})X̄
↑1
m−1,n{P } = X̄↑1

m−1,n{P }(F̂nF̂n−1 · · · F̂1), (40)

the first recursion relation in (18) for X̄n,m{F̂ } and

(P{1,m+n} · · · P{1,m+1})X̄
↑1
m−1,n{P } = X̄↑1

m−1,n{P }(P{1,n+1}P{1,n} · · · P{1,2})

= X̄↑1
m−1,n{P }(P1P2 · · ·Pn) = X̄m,n{P } (41)

(by the second recurrency relation in (16) for X̄m,n{P }) to finish the proof of (38).
Thus the elements Fm,n can be regarded as the universal (in the Hopf algebra

theoretical sense) counterpart of the elements X̄m,n.
(c) We describe an operation which transforms a collection Tm,n satisfying (11) and (13) into

another, ‘dual’, collection Ťm,n satisfying (11) and (13).
Keep the notation from the previous remark. Let X ∈ End(V ⊗m) and Y ∈ End(V ⊗n)

be two operators. Then

X̄m,n{P }X↑nY = XY ↑mX̄m,n{P }. (42)

6
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Define Ťm,n by

Tm,n := Ťn,mX̄m,n{P } or Ťm,n := Tn,mX̄m,n{P }. (43)

The equivalence of two definitions follows from:

X̄m,n{P }−1 = X̄n,m{P }. (44)

Relation (13) is satisfied for the collection Ťm,n. Relation (11) reads, by (42),

Ťm,n+kŤn,kX̄n+k,m{P }X̄↑m

k,n{P } = Ťm+n,k Ť ↑k
m,nX̄k,m+n{P }X̄n,m{P }. (45)

Since

X̄n+k,m{P }X̄↑m

k,n{P } = X̄k,m+n{P }X̄n,m{P } (46)

it follows that relation (11) is as well satisfied for the collection Ťm,n.
With the help of the identity �̄m{P }2 = Id, it is straightforward to verify that the

collection Šm for Ťm,n is given by

Šm = Sm�̄m{P }. (47)

3. Hecke and BMW algebras

In the following we call the elements Xm,n additive shuffles and sXm,n multiplicative shuffles.
In this section we derive the sequences of the (anti-)symmetrizers for the Hecke and BMW
algebras with the help of the multiplicative shuffles. We compare the multiplicative versions
with known expressions for the (anti-)symmetrizers.

We derive a new expression for the (anti-)symmetrizers in terms of the highest
multiplicative 1-shuffles alone and, for the Hecke algebras, in terms of the highest additive
1-shuffles alone.

In principle, the Hecke algebras can be considered as quotients of the BMW algebras and
many formulae for the Hecke algebras can be obtained from this point of view. Because of
the importance of the Hecke algebras we prefer however to treat them separately.

3.1. Hecke algebras

(1) The tower of the A-Type Hecke algebras HM+1(q) (see, e.g., [19] and references therein)
depends on a parameter q ∈ k∗; the algebra HM+1(q) is the quotient of the braid group
ring kBM+1 by

σ 2
i = (q − q−1)σi + 1, i = 1, . . . ,M. (48)

For q2 �= 1, the baxterized elements have the form

σi(x) := 1

q − q−1

(
xσi − x−1σ−1

i

); (49)

they are normalized, σi(1) = 1, and satisfy the unitarity condition

σi(x)σi(x
−1) = 1 − (x − x−1)2

(q − q−1)2
. (50)

7
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(2) The symmetrizers Sn, n = 1, . . . , M + 1 ([18, 32, 10]) are the nonzero elements

S1 = 1, Sn ∈ Hn(q) ⊂ HM+1(q), (51)

which satisfy

σiSn = Snσi = qSn, i = 1, . . . , n − 1, (52)

which forces S2
n ∼ Sn; they are normalized by

S2
n = Sn. (53)

The sequence {Sn} is defined by (51), (52) and (53) uniquely (and it does exist for the
Hecke quotients for generic q); the anti-symmetrizers are related to the symmetrizers by
the isomorphisms HM+1(q) → HM+1(−q−1), σi �→ σi .

(3) The symmetrizers can be quickly constructed with the help of the baxterized elements. Let
[n]q := (qn − q−n)/(q − q−1), [n]q! := [1]q[2]q · · · [n]q and [n]$

q := [1]q![2]q! · · · [n]q!.
By (31), σi

q

�n = q

�nσi = q
q

�n, or, equivalently, σi(q)
q

�n = [i + 1]q
q

�n, so
(

q

�n)
2 = [n]$

q

q

�n and

Sn = 1

[n]$
q

q

�n. (54)

In particular, the symmetrizers satisfy the recurrent relation

Sn = 1

[n]q!
q

X1,n−1Sn−1. (55)

(4) We recall several other forms of the symmetrizers and compare them with (54) and (55).
A convenient recurrent relation for the symmetrizers is (see, e.g., [17, 11])

Sn = Sn−1
σn−1(q

n−1)

[n]q
Sn−1. (56)

This is checked either by verifying (51), (52) and (53) and then by uniqueness or, using
(55), by the following calculation:

[n]q!Sn = σ1(q) · · · σn−2(q
n−2)σn−1(q

n−1)Sn−1

= σ1(q) · · · σn−2(q
n−2)σn−1(q

n−1)Sn−2Sn−1

= σ1(q) · · · σn−2(q
n−2)Sn−2σn−1(q

n−1)Sn−1 = Sn−1σn−1(q
n−1)Sn−1. (57)

Denote X1,n{qσ } (the additive shuffle built with the qσ1, . . . , qσn−1) by X1,n. There is
another recurrent relation for the symmetrizers in terms of the additive shuffles

Sn = q1−n

[n]q
X1,n−1Sn−1. (58)

In other words

Sn = q− n(n−1)

2

[n]q!
�n{qσ }. (59)

This is checked again either by verifying (51), (52) and (53) and then by uniqueness or,
using (56), by induction

[n]qSn = Sn−1σn−1(q
n−1)Sn−1 = q2−n

[n − 1]q
X1,n−2Sn−2σn−1(q

n−1)Sn−1

= q2−n

[n − 1]q
X1,n−2σn−1(q

n−1)Sn−1 = q2−n

[n − 1]q
X1,n−2([n − 1]qσn−1 + q1−n)Sn−1

= q2−n

[n − 1]q
([n − 1]qX1,n−2σn−1 + q−1[n − 1]q)Sn−1 = q1−nX1,n−1Sn−1. (60)

8
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We stress that the factors 1
[n]q !

q

X1,n−1 in (55) and q1−n

[n]q
X1,n−1 in (58) differ; the

multiplicative and additive shuffles do not coincide although their products—the
symmetrizers—do.

(5) It turns out that the symmetrizer Sn can be expressed in terms of the multiplicative 1-shuffle
q

X1,n−1 or in terms of the additive 1-shuffle X1,n−1 only.
For the additive shuffle, we prove by induction that, for k = 1, . . . , n − 1,

k−1∏
j=0

(X1,n−1 − qj−1[j ]q) = qk(k−1)X1,n−1X1,n−2 · · · X1,n−k. (61)

For k = 1 there is nothing to prove. Assume that (61) holds for some k < n − 1. By
(9), the right-hand side is divisible, from the right, by S

↑(n−k)

k . Multiply (61) by the factor
(X1,n−1 − qk−1[k]q) from the right and substitute, in the right-hand side,

X1,n−1 = X↑(n−k)

1,k−1 + qkX1,n−1−kσn−k · · · σn−1

in this factor. Since S
↑(n−k)

k X↑(n−k)

1,k−1 = qk−1[k]qS
↑(n−k)

k , the product in the right-hand side
simplifies

X1,n−1X1,n−2 · · · X1,n−k

(−qk−1[k]q + X↑(n−k)

1,k−1 + qkX1,n−1−kσn−k · · · σn−1
)

= qkX1,n−1X1,n−2 · · · X1,n−kX1,n−1−kσn−k · · · σn−1

= q2kX1,n−1X1,n−2 · · · X1,n−1−k (62)

(in the last equality we again used (9) for X1,n−1X1,n−2 · · · X1,n−kX1,n−1−k),
establishing the induction step.

In particular, at k = n−1, we obtain, by (58), the expression of Sn in terms of X1,n−1

Sn = q− (n−1)(3n−4)

2

[n]q!

n−2∏
j=0

(X1,n−1 − qj−1[j ]q). (63)

(6) For the multiplicative shuffle, we prove by induction that, for k = 1, . . . , n,

(
q

X1,n)
k = [n + 1 − k]$

q([n + 1]q!)k

[n]$
q

q

X1,n

q

X1,n−1 · · · q

X1,n+1−k. (64)

For k = 1 there is nothing to prove. Assume that (61) holds for some k < n. Relations
(5) and (8) hold for �m = q

�m and Xm,n = q

Xm,n. Therefore, (9) holds as well and the
product

q

X1,n
q

X1,n−1 · · · q

X1,n−k is divisible, from the right, by
q

�
↑(n−k)

k+1 . The induction
step is

q

X1,n · · · q

X1,n+1−k · q

X1,n = q

X1,n · · · q

X1,n+1−k

q

X1,n−k · σn−k+1(q
n−k+1) · · · σn(q

n)

= [n + 1]q!

[n + 1 − k]q!
q

X1,n

q

X1,n−1 · · · q

X1,n+1−k

q

X1,n−k, (65)

since Sn+1σk(q
k) = [k + 1]qSn+1, k = 1, . . . , n.

9
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In particular, at k = n, we obtain, by (54), the expression of Sn in terms of
q

X1,n

Sn+1 =
(

1

[n + 1]q!
q

X1,n

)n

. (66)

Remark. Let R̂ be a Hecke Yang–Baxter matrix and ρR̂ the corresponding local representation
of the tower of the Hecke algebras. The symmetrizers Sj built with T ′

m,n = ρR̂(sXm,n), at
s = q, are the same as the symmetrizers built with T ′′

m,n = ρR̂(Xm,n{tσ }), at t = q (the
symmetrizers coincide at s2 = q2 and t = q or s2 = q−2 and t = −q−1, these are the
values for the anti-symmetrizers; the symmetrizers coincide trivially at s2 = 1 and t = 0;
otherwise the symmetrizers for {T ′

m,n} and {T ′′
m,n} differ). Therefore, for the Hecke algebras,

the b-shuffle algebra on
⊕

j Im(Sj ) coincides with the Nichols–Woronowicz algebra (or the
symmetric algebra of the quantum space). Indeed, the composition law (12) on

⊕
j Im(Sj )

can be written in the following equivalent form:

u 
 v := Sm+n(u
′ ⊗ v′), (67)

where u = Smu′ and v = Snv
′. Also, Im(Sj ) � V ⊗j /Ker(Sj ), and the algebra on

⊕
j Im(Sj )

can be defined alternatively as the algebra on
⊕

j V ⊗j /Ker(Sj ) with the composition law

ū ◦ v̄ := u ⊗ v mod Ker(Sm+n), (68)

where ū ∈ V ⊗m/Ker(Sm) and v̄ ∈ V ⊗n/Ker(Sn); u ∈ V ⊗m and v ∈ V ⊗n are representatives
of ū and v̄, respectively. In formulations (67) or (68), the algebra on

⊕
j Im(Sj ) or⊕

j V ⊗j /Ker(Sj ) depends only on the collection {Sj }; the composition laws (67) or (68) are

well defined if Sm+n is divisible by Sm and S↑m
n from the right (which is, in general, weaker than

Sm+n = Tn,mSmS↑m
n ); when, say, the representative u of ū changes, u ∼ u + δu,Sm(δu) = 0,

so δu ⊗ v ∈ Ker(Sm+n) and the product ū ◦ v̄ does not change, u ⊗ v ≡ (u + δu) ⊗ v mod
Ker(Sm+n).

However, the algebras on the space
⊕

j V ⊗j , built with T ′
m,n or T ′′

m,n, are very different,
as is seen, for example from the comparison of the spectra of the multiplicative and additive
1-shuffles in section 4. The collections {T ′

m,n} and {T ′′
m,n} seem to have different ranges of

applicability (already for the BMW algebras, the symmetrizers for these two collections do
not coincide).

3.2. BMW algebras

The tower of the Birman–Murakami–Wenzl algebras BMWM+1(q, ν) was introduced in [24]
and [2]; it depends on two parameters, q ∈ k∗ and ν ∈ k\{0, q,−q−1}. For q2 �= 1, the algebra
BMWM+1(q, ν) is the quotient of the braid group ring kBM+1 by

κiσi = σiκi = νκi, (69)

κiσi−1κi = ν−1κi, κiσ
−1
i−1κi = νκi, (70)

where elements κi are defined by

σi − σ−1
i = (q − q−1)(1 − κi). (71)

The Hecke quotient is κi = 0.
For q2 �= 1, the baxterized elements have the form ([20, 25, 16, 13])

σi(x) := x−1

(
1 +

x2 − 1

q − q−1
σi +

x2 − 1

1 − ν−1q−1x2
κi

)
. (72)

10
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Their classical counterparts (for the Brauer algebras) were found in [35]. Elements (72)
are normalized, σi(1) = 1, and satisfy the same unitarity conditions (50). The spectral
decomposition of the generator σi contains three idempotents. The basic symmetrizer (the
idempotent corresponding to the eigenvalue q) is proportional to σi(q). However, σi(q

−1) is a
mixture of two other idempotents. There are again isomorphisms ι : BMWM+1(q, ν) →
BMWM+1(−q−1, ν), σi �→ σi . Formula (72) is not invariant under ι. The basic anti-
symmetrizer (the idempotent corresponding to the eigenvalue −q−1) is proportional to
ι−1(σ (x)) at x = q.

Again, the symmetrizers Sn, n = 1, . . . , M + 1, are the nonzero elements, which satisfy

S1 = 1, Sn ∈ BMWn(q) ⊂ BMWM+1(q), (73)

(52) and (53); they exist and are defined uniquely by conditions (73), (52) and (53).
Again, with the knowledge of the baxterized elements, one constructs the symmetrizers

immediately: they are given by the same formula (54) and satisfy the same recurrence (55);
the anti-symmetrizers are related to the symmetrizers by the isomorphisms ι.

The recurrency (56) holds for the BMW symmetrizers as well (it was used in [31, 7]); it
is derived from the baxterized form of the symmetrizers by the same calculation (57).

Recurrency relation (58) does not hold for the BMW symmetrizers; the additive shuffles
have to be modified. A version of such modification was suggested in [12] and can be derived
by a calculation similar to (60). For the Hecke algebras the expansions of the products
X1,n−1X1,n−2 · · · X1,n−k contain only reduced words; this is no longer so for the modified
shuffles for the BMW algebras, the expansions contain similar terms (in a monomial basis,
like the one suggested in [21]) and the formulae are not as elegant as for the Hecke algebras.

Formula (66) holds, with the same derivation, for the BMW symmetrizers.

4. Spectrum of 1-shuffles

Polynomial identities for the multiplicative (for the Hecke and BMW algebras) and additive
(for the Hecke algebras) 1-shuffles follow, as a by-product, from (66) and (63). We establish
the multiplicities of the eigenvalues in this section. The polynomial identity for the additive
shuffle was discovered in [33] for the symmetric groups and generalized to the Hecke algebras
in [22] with the help of the interpretation of the Hecke algebras in terms of flag manifolds
over finite fields. The multiplicities of the eigenvalues of the additive shuffles were obtained
in [6] for the symmetric groups. We propose a different approach to the calculation of the
multiplicities for the Hecke algebras; our method uses the traces of the operators of the left
multiplication by the additive shuffles.

Let u ∈ Hn(q) ⊂ Hm(q),m � n. Denote by Lu the operator of the left multiplication by
u,Lu : Hm(q) → Hm(q), Lu(x) := ux. We denote by TrHm

(Lu) the trace of the operator Lu,
considered as the operator on Hm(q).

(1) We start with the multiplicative shuffles. Since

q

X1,nSn+1 = [n + 1]q!Sn+1, (74)

we find, multiplying (66) by (
q

X1,n − [n + 1]q!), the following polynomial identity for
the multiplicative shuffle:

(
q

X1,n)
n(

q

X1,n − [n + 1]q!) = 0, (75)

11
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which holds for both Hecke and BMW algebras. This is the minimal polynomial, already
for the Hecke algebras. It is seen without calculations in the Burau representation [4]
of Hn+1,

σj (q
j ) �→ [j + 1]q Idj−1 ⊕

(
q−j [j ]q

[j ]q qj

)
⊕ [j + 1]q Idn−j . (76)

If the minimal polynomial is t i(t −[n+1]q!) with i < n (the eigenvalue [n+1]q! is present
due to (74)) then Sn+1 is proportional to the smaller than n power of

q

X1,n. The matrix
of the element σj (q

j ) in the Burau representation has only one nonzero entry under the
main diagonal, on the intersection of (j + 1)st line and j th column. Therefore, the matrix
of

q

X1,n has only one sub-diagonal filled with (possibly) nonzeros. However, the matrix
of Sn+1 is proportional to the Hankel type matrix Ai

j := qi+j ; a smaller than n power of
the matrix of

q

X1,n has zero in the very left entry of the bottom line and cannot be equal
to the matrix of Sn+1.

Thus, the element
q

X1,n is not semi-simple for n > 1; the semi-simple part of
q

X1,n

is [n + 1]q!Sn+1 and the eigenvalue [n + 1]q! is simple (the rank of the projector LSn+1 on
Hn+1(q) is one, because Sn+1σj = qSn+1, j = 1, . . . , n).

(2) Similarly, multiplying (63) by (X1,n−1 − q1−n[n]q), we find the following polynomial
identity for the additive shuffle:

(X1,n−1 − q1−n[n]q)
n−2∏
j=0

(X1,n−1 − q1−j [j ]q) = 0. (77)

The q-numbers q1−j [j ]q ≡ 1 + q2 + · · · + q2j−2, j = 1, 2, . . . , are polynomials in
q, linearly independent over Z. Therefore, there is a unique integer combination∑

j∈{1,2,...,n−2,n} njq
1−j [j ]q, nj ∈ Z, of these q-numbers, which is equal to the trace

of LX1,n−1
; the coefficients nj in this combination are the multiplicities of the

eigenvalues q1−j [j ]q, j > 0. The multiplicity n0 of the eigenvalue 0 is fixed by∑
nj = dim(Hn(q)) ≡ n!. Thus, the presence of the parameter q gives a simple

way to calculate the multiplicities.

Lemma 1. (i) If u ∈ Hj then

TrHj+1(Lu) = TrHj+1(Lu↑1) = (j + 1)TrHj
(Lu). (78)

(ii) TrHj+1(Lσ1σ2···σj
) = (q − q−1)TrHj

(Lσ1σ2···σj−1), j > 0. (79)

(iii) TrHj
(Lσk−l+1···σk−1σk

) = j !

(l + 1)!
(q − q−1)l, j > k � l. (80)

Proof. Recall that, as a vector space, Hj+1(q) � ⊕j−1
k=−1Wk , where Wk is the vector space

consisting of elements vσjσj−1 · · · σj−k with v ∈ Hj(q) (the word σjσj−1 · · · σj−k is, by
definition, empty for k = −1); each Wk is canonically isomorphic to Hj(q) as a vector space,
the isomorphism is vσjσj−1 · · · σj−k �→ v. The Hecke versions of the automorphism a and
the anti-automorphism b, defined in (6), transform the above decomposition of Hj+1(q) into
Hj+1(q) � ⊕j−1

k=−1W
′
k , where W ′

k consists of elements vσ1σ2 · · · σk+1 with v ∈ Hj(q)↑1 and

Hj+1(q) � ⊕j−1
k=−1W

′′
k , where W ′′

k consists of elements σj−k · · · σj−1σjv with v ∈ Hj(q).
The operator Lu (respectively, Lu↑1 ) acts in each of the spaces Wk (respectively, W ′

k)
separately and this action commutes with the isomorphisms Wk � Hj(q) (respectively,
W ′

k � Hj(q)↑1). This establishes (i).

12
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In fact, it was enough to find the formula for TrHj+1(Lu); TrHj+1(Lu) = TrHj+1(Lu↑1)

because u↑1 is conjugate to u, σ1 · · · σju = u↑1σ1 · · · σj , for u ∈ Hj(q).
(ii) Given a basis {eα} of a vector space U we say that the vector eα (from the basis) does

not contribute to the trace of an operator X : U → U if Xα
α = 0 (no summation), where Xβ

α

is the matrix of X in the basis {eα}.
We use the decomposition Hj+1(q) � ⊕n−1

k=−1W
′′
k . The operator Lσ1σ2···σj

maps W ′′
−1 to

W ′′
j−1, so vectors from W ′′

−1 do not contribute to the trace of Lσ1σ2···σj
. For 0 � k < j ,

(σ1 · · · σj )(σj−k · · · σj−1 · σj )v = (σj−k+1 · · · σj )(σ1 · · · σj )σjv

= (σj−k+1 · · · σj )(σ1 · · · σj−1)((q − q−1)σj + 1)v

= (q − q−1)(σj−k+1 · · · σj )(σ1 · · · σj )v + (σj−k+1 · · · σj )(σ1 · · · σj−1)v

= (q − q−1)(σ1 · · · σj )(σj−k · · · σj−1)v + (σj−k+1 · · · σj )(σ1 · · · σj−1)v, (81)

the operator Lσ1σ2···σj
maps W ′′

k to W ′′
j−1 ⊕W ′′

k−1. Therefore, vectors from W ′′
k do not contribute

to the trace of Lσ1σ2···σj
for k < j − 1. For k = j − 1, the component L�

σ1σ2···σj
of the operator

Lσ1σ2···σj
, which maps W ′′

j−1 to W ′′
j−1, may have a nonzero trace. This component reads,

by (81),

L�
σ1σ2···σj

(σ1 · · · σjv) = (q − q−1)σ1 · · · σjLσ1σ2···σj−1(v),

and the assertion (ii) follows.
(iii) Follows from (i) and (ii). �

By (80), the trace of the operator LX1,n−1
is

TrHn
(LX1,n−1

) =
n−1∑
i=0

n!

(i + 1)!
(q2 − 1)i . (82)

For the symmetric group Sn, the multiplicity of the eigenvalue j of LX1,n−1
is the number

of permutations in Sn with exactly j fixed points [6]. Recall that the derangement number dn

(the number of permutations in Sn without fixed points) is

dn = n!
n∑

i=0

(−1)i

i!
(83)

and the number dn,j of permutations in Sn with exactly j fixed points is

dn,j =
(

n

j

)
dn−j ≡ n!

j !

n−j∑
i=0

(−1)i

i!
. (84)

For generic q, the multiplicities of the eigenvalues of LX1,n−1
are the same as for the symmetric

group. By construction,
∑n

j=0 dn,j = n!. Thus, to rederive the multiplicities we have only to
check that

∑n
j=0 dn,j q

1−j [j ]q = TrHn

(
LX1,n−1

)
, or, explicitly,

n∑
j=0

n!

j !

n−j∑
k=0

(−1)k

k!
q1−j [j ]q =

n−1∑
i=0

n!

(i + 1)!
(q2 − 1)i . (85)

It is straightforward to verify that both left- and right-hand sides satisfy the same recurrency
relation in n

fn+1 = (n + 1)fn + (q2 − 1)n, (86)

with the same initial condition f0 = 0, and thereby coincide.
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